Matteo Wong talks with mathematician Terence Tao about the advent of AI in mathematical research and finds that Tao has some very big questions indeed…
Terence Tao, a mathematics professor at UCLA, is a real-life superintelligence. The “Mozart of Math,” as he is sometimes called, is widely considered the world’s greatest living mathematician. He has won numerous awards, including the equivalent of a Nobel Prize for mathematics, for his advances and proofs. Right now, AI is nowhere close to his level.
But technology companies are trying to get it there. Recent, attention-grabbing generations of AI—even the almighty ChatGPT—were not built to handle mathematical reasoning. They were instead focused on language: When you asked such a program to answer a basic question, it did not understand and execute an equation or formulate a proof, but instead presented an answer based on which words were likely to appear in sequence. For instance, the original ChatGPT can’t add or multiply, but has seen enough examples of algebra to solve x + 2 = 4: “To solve the equation x + 2 = 4, subtract 2 from both sides …” Now, however, OpenAI is explicitly marketing a new line of “reasoning models,” known collectively as the o1 series, for their ability to problem-solve “much like a person” and work through complex mathematical and scientific tasks and queries. If these models are successful, they could represent a sea change for the slow, lonely work that Tao and his peers do.
After I saw Tao post his impressions of o1 online—he compared it to a “mediocre, but not completely incompetent” graduate student—I wanted to understand more about his views on the technology’s potential. In a Zoom call last week, he described a kind of AI-enabled, “industrial-scale mathematics” that has never been possible before: one in which AI, at least in the near future, is not a creative collaborator in its own right so much as a lubricant for mathematicians’ hypotheses and approaches. This new sort of math, which could unlock terra incognitae of knowledge, will remain human at its core, embracing how people and machines have very different strengths that should be thought of as complementary rather than competing…
A sample of what follows…
The classic idea of math is that you pick some really hard problem, and then you have one or two people locked away in the attic for seven years just banging away at it. The types of problems you want to attack with AI are the opposite. The naive way you would use AI is to feed it the most difficult problem that we have in mathematics. I don’t think that’s going to be super successful, and also, we already have humans that are working on those problems.
… Tao: The type of math that I’m most interested in is math that doesn’t really exist. The project that I launched just a few days ago is about an area of math called universal algebra, which is about whether certain mathematical statements or equations imply that other statements are true. The way people have studied this in the past is that they pick one or two equations and they study them to death, like how a craftsperson used to make one toy at a time, then work on the next one. Now we have factories; we can produce thousands of toys at a time. In my project, there’s a collection of about 4,000 equations, and the task is to find connections between them. Each is relatively easy, but there’s a million implications. There’s like 10 points of light, 10 equations among these thousands that have been studied reasonably well, and then there’s this whole terra incognita.
There are other fields where this transition has happened, like in genetics. It used to be that if you wanted to sequence a genome of an organism, this was an entire Ph.D. thesis. Now we have these gene-sequencing machines, and so geneticists are sequencing entire populations. You can do different types of genetics that way. Instead of narrow, deep mathematics, where an expert human works very hard on a narrow scope of problems, you could have broad, crowdsourced problems with lots of AI assistance that are maybe shallower, but at a much larger scale. And it could be a very complementary way of gaining mathematical insight.
Wong: It reminds me of how an AI program made by Google Deepmind, called AlphaFold, figured out how to predict the three-dimensional structure of proteins, which was for a long time something that had to be done one protein at a time.
Tao: Right, but that doesn’t mean protein science is obsolete. You have to change the problems you study. A hundred and fifty years ago, mathematicians’ primary usefulness was in solving partial differential equations. There are computer packages that do this automatically now. Six hundred years ago, mathematicians were building tables of sines and cosines, which were needed for navigation, but these can now be generated by computers in seconds.
I’m not super interested in duplicating the things that humans are already good at. It seems inefficient. I think at the frontier, we will always need humans and AI. They have complementary strengths. AI is very good at converting billions of pieces of data into one good answer. Humans are good at taking 10 observations and making really inspired guesses…
Terence Tao, the world’s greatest living mathematician, has a vision for AI: “We’re Entering Uncharted Territory for Math,” from @matteo_wong in @TheAtlantic.
###
As we go figure, we might think recursively about Benoit Mandelbrot; he died on this date in 2010. A mathematician (and polymath), his interest in “the art of roughness” of physical phenomena and “the uncontrolled element in life” led to work (which included coining the word “fractal”, as well as developing a theory of “self-similarity” in nature) for which he is known as “the father of fractal geometry.”